El consumo habitual de café está inversamente asociado con biomarcadores relacionados con sindromes que involucran adiponectina

28-04-2017

El síndrome metabólico es una enfermedad de alto interés en salud pública. El estudio busca investigar la asociación entre consumo de café y biomarcadores relativos al síndrome metabólico en hombres sanos. La población a estudio fueron 364 hombres reclutados en Wakayama, Japón dentro de su lugar de trabajo. Se indagó por hábitos de vida incluyendo consumo de alcohol, consumo de cigarrillo y ejercicio diario mediante un cuestionario auto-diligenciado. Se midió grasa visceral y grasa subcutánea mediante tomografía axial computarizada y se midieron niveles de adiponectinas (bajo, medio y alto peso molecular). Las asociaciones entre consumo de café y biomarcadores para síndrome metabólico se evaluaron mediante dos modelos multivariados. El primer modelo ajustado por edad, consumo de alcohol, consumo de cigarrillo y ejercicio; y el segundo modelo con todos los anteriores además de ajustado por IMC. Los participantes se agruparon en dos grupos de acuerdo a su riesgo para síndrome metabólico (presión arterial alta, hemoglobina glicosilada elevada y niveles bajos de colesterol HDL). Los principales hallazgos corresponden a una asociación inversa entre el consumo bajo (1-3 tazas al día) y moderado (más de 4 tazas por día) de café con el área de grasa visceral y la tasa de grasa visceral/grasa subcutánea (p<0.0001). En el caso de los participantes con bajo riesgo de síndrome metabólico, el consumo moderado de café mostro asociaciones significativas con el nivel total de adiponectinas y adiponectinas de alto peso molecular (P<0.05) en ambos análisis. Por su parte, no se encontraron asociaciones significativas entre consumo de café y niveles de adiponectinas en los hombres con mayor riesgo de síndrome metabólico. En conclusión, el consumo habitual y moderado de café muestra una asociación inversa significativa con biomarcadores para síndrome metabólico. Esta asociación posiblemente se da a expensas de las adiponectinas que están inversamente relacionadas a la acumulación de grasa visceral.

Mure K., Maeda S., Mukoubayashi C., Mugitani K., Iwane K., Kinoshita F., Mohara O., Takeshita T. Habitual coffee consumption inversely associated with metabolic syndrome-related biomarkers involving adiponectin. Nutrition 2013;29(7–8):982-987

[1] Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet 2005;365:1415–28.

[2] Grundy SM. Metabolic syndrome pandemic. Arterioscler Thromb Vasc Biol 2008;28:629–36.

[3] Health-Service-Bureau. Outline for the results of the National Health and Nutrition Survey Japan, 2006. Japan: Ministry of Health, Labour and Welfare; 2006.

[4] Ninomiya JK, L’Italien G, Criqui MH, Whyte JL, Gamst A, Chen RS. Associ- ation of the metabolic syndrome with history of myocardial infarction and stroke in the Third National Health and Nutrition Examination Survey. Circulation 2004;109:42–6.

[5] McNeill AM, Rosamond WD, Girman CJ, Golden SH, Schmidt MI, East HE, et al. The metabolic syndrome and 11-year risk of incident cardiovascular disease in the atherosclerosis risk in communities study. Diabetes Care 2005;28:385–90.

[6] Pais R, Silaghi H, Silaghi AC, Rusu ML, Dumitrascu DL. Metabolic syndrome and risk of subsequent colorectal cancer. World J Gastroenterol 2009; 15:5141–8.

[7] Osaki Y, Taniguchi S, Tahara A, Okamoto M, Kishimoto T. Metabolic syndrome and incidence of liver and breast cancers in Japan. Cancer Epi- demiol 2012;36:141–7.

[8]  Sirtori CR, Galli C, Anderson JW, Sirtori E, Arnoldi A. Functional foods for dyslipidaemia and cardiovascular risk prevention. Nutr Res Rev 2009; 22:244–61.

[9]  Esposito K, Maiorino MI, Ceriello A, Giugliano D. Prevention and control of type 2 diabetes by Mediterranean diet: a systematic review. Diabetes Res Clin Pract 2010;89:97–102.

[10]  Fappa E, Yannakoulia M, Pitsavos C, Skoumas I, Valourdou S, Stefanadis C. Lifestyle intervention in the management of metabolic syndrome: could we improve adherence issues? Nutrition 2008;24:286–91.

[11]  Wu JN, Ho SC, Zhou C, Ling WH, Chen WQ, Wang CL, et al. Coffee consumption and risk of coronary heart diseases: a meta-analysis of 21 prospective cohort studies. Int J Cardiol 2009;137:216–25.

[12]  Arab L. Epidemiologic evidence on coffee and cancer. Nutr Cancer 2010; 62:271–83.

[13]  van Dam RM, Hu FB. Coffee consumption and risk of type 2 diabetes: a systematic review. JAMA 2005;294:97–104.

[14]  Freedman ND, Park Y, Abnet CC, Hollenbeck AR, Sinha R. Association of coffee drinking with total and cause-specific mortality. N Engl J Med 2012;366:1891–904.

[15]  Hino A, Adachi H, Enomoto M, Furuki K, Shigetoh Y, Ohtsuka M, et al. Habitual coffee but not green tea consumption is inversely associated with metabolic syndrome: an epidemiological study in a general Japanese population. Diabetes Res Clin Pract 2007;76:383–9.

[16]  Driessen MT, Koppes LL, Veldhuis L, Samoocha D, Twisk JW. Coffee consumption is not related to the metabolic syndrome at the age of 36 years: the Amsterdam Growth and Health Longitudinal Study. Eur J Clin Nutr 2009;63:536–42.

[17]  Matsuura H, Mure K, Nishio N, Kitano N, Nagai N, Takeshita T. Relationship between coffee consumption and prevalence of metabolic syndrome among Japanese civil servants. J Epidemiol 2012;22:160–6.

[18]  Alberti KG, Zimmet P, Shaw J. The metabolic syndromeda new worldwide definition. Lancet 2005;366:1059–62.

[19]  American Diabetes Association. Standards of medical care in diabetesd 2011. Diabetes Care 2011;34(suppl 1):S11–61.

[20]  Maury E, Brichard SM. Adipokine dysregulation, adipose tissue inflam- mation and metabolic syndrome. Mol Cell Endocrinol 2010;314:1–16.

[21]  Williams CJ, Fargnoli JL, Hwang JJ, van Dam RM, Blackburn GL, Hu FB, et al. 
Coffee consumption is associated with higher plasma adiponectin concentrations in women with or without type 2 diabetes: a prospective cohort study. Diabetes Care 2008;31:504–7.

[22]  Kashiwagi A, Kasuga M, Araki E, Oka Y, Hanafusa T, Ito H, et al. International clinical harmonization of glycated hemoblobin in Japan: from Japan Dia- betes Society to National Glycohemoglobin Standardization Program values. J Diabetes Investig 2012;3:39–40.

[23]  de Koning Gans JM, Uiterwaal CS, van der Schouw YT, Boer JM, Grobbee DE, Verschuren WM, et al. Tea and coffee consumption and cardiovascular morbidity and mortality. Arterioscler Thromb Vasc Biol 2010;30: 1665–71.

[24]  Sartorelli DS, Fagherazzi G, Balkau B, Touillaud MS, Boutron-Ruault MC, de Lauzon-Guillain B, et al. Differential effects of coffee on the risk of type 2 diabetes according to meal consumption in a French cohort of women: the E3N/EPIC cohort study. Am J Clin Nutr 2010;91:1002–12.

[25]  Hayashi T, Boyko EJ, McNeely MJ, Leonetti DL, Kahn SE, Fujimoto WY. Visceral adiposity, not abdominal subcutaneous fat area, is associated with an increase in future insulin resistance in Japanese Americans. Diabetes 2008;57:1269–75.

[26]  Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu CY, et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation 2007;116:39–48.

[27]  Hanhineva K, Torronen R, Bondia-Pons I, Pekkinen J, Kolehmainen M, Mykkanen H, et al. Impact of dietary polyphenols on carbohydrate metabolism. Int J Mol Sci 2010;11:1365–402.

[28]  Belza A, Toubro S, Astrup A. The effect of caffeine, green tea and tyrosine on thermogenesis and energy intake. Eur J Clin Nutr 2009;63:57–64.

[29]  Whitehead JP, Richards AA, Hickman IJ, Macdonald GA, Prins JB. Adipo- nectin–a key adipokine in the metabolic syndrome. Diabetes Obes Metab 2006;8:264–80.

[30] Matsuzawa Y. Therapy Insight: adipocytokines in metabolic syndrome and related cardiovascular disease. Nat Clin Pract Cardiovasc Med 2006;3: 35–42.

[31] Imatoh T, Tanihara S, Miyazaki M, Momose Y, Uryu Y, Une H. Coffee consumption but not green tea consumption is associated with adiponectin levels in Japanese males. Eur J Nutr 2011;50:279–84.

[32] Kempf K, Herder C, Erlund I, Kolb H, Martin S, Carstensen M, et al. Effects of coffee consumption on subclinical inflammation and other risk factors for type 2 diabetes: a clinical trial. Am J Clin Nutr 2010;91:950–7.

[33] Yamashita K, Yatsuya H, Muramatsu T, Toyoshima H, Murohara T, Tamakoshi K. Association of coffee consumption with serum adiponectin, leptin, inflammation and metabolic markers in Japanese workers: a cross- sectional study. Nutrition & diabetes 2012;2:e33.

[34] Bobbert T, Rochlitz H, Wegewitz U, Akpulat S, Mai K, Weickert MO, et al. Changes of adiponectin oligomer composition by moderate weight reduction. Diabetes 2005;54:2712–9.

[35] Aso Y, Yamamoto R, Wakabayashi S, Uchida T, Takayanagi K, Takebayashi K, et al. Comparison of serum high-molecular weight (HMW) adiponectin with total adiponectin concentrations in type 2 diabetic patients with coronary artery disease using a novel enzyme-linked immunosorbent assay to detect HMW adiponectin. Diabetes 2006;55:1954–60.

[36] Hoelzl C, Knasmuller S, Wagner KH, Elbling L, Huber W, Kager N, et al. Instant coffee with high chlorogenic acid levels protects humans against oxidative damage of macromolecules. Mol Nutr Food Res 2010;54:1722–33.

[37] Misik M, Hoelzl C, Wagner KH, Cavin C, Moser B, Kundi M, et al. Impact of paper filtered coffee on oxidative DNA-damage: results of a clinical trial. Mutat Res 2010;692:42–8.

[38] Gletsu-Miller N, Hansen JM, Jones DP, Go YM, Torres WE, Ziegler TR, et al. Loss of total and visceral adipose tissue mass predicts decreases in oxidative stress after weight-loss surgery. Obesity (Silver Spring) 2009;17:439–46.

[39] Van der Zwan LP, Scheffer PG, Dekker JM, Stehouwer CD, Heine RJ, Teerlink T. Hyperglycemia and oxidative stress strengthen the association between myeloperoxidase and blood pressure. Hypertension 2010;55:1366–72.

[40] Vincent HK, Taylor AG. Biomarkers and potential mechanisms of obesity- induced oxidant stress in humans. Int J Obes (Lond) 2006;30:400–18. [41] Lamb RE, Goldstein BJ. Modulating an oxidative-inflammatory cascade:

potential new treatment strategy for improving glucose metabolism,

insulin resistance, and vascular function. Int J Clin Pract 2008;62:1087–95. [42] Shen L. Beneficial effects of coffee consumption go beyond antioxidation.

Nutrition 2012;28:1194–5.
[43] Shen T, Park YC, Kim SH, Lee J, Cho JY. Nuclear factor-kappaB/signal trans-

ducers and activators of transcription-1-mediated inflammatory responses in lipopolysaccharide-activated macrophages are a major inhibitory target of kahweol, a coffee diterpene. Biol Pharm Bull 2010;33:1159–64.

[44] Kalthoff S, Ehmer U, Freiberg N, Manns MP, Strassburg CP. Coffee induces expression of glucuronosyltransferases by the aryl hydrocarbon receptor and Nrf2 in liver and stomach. Gastroenterology 2010;139:1699–710. 710 e1–2.

[45] Zhang Y, Lee ET, Cowan LD, Fabsitz RR, Howard BV. Coffee consumption and the incidence of type 2 diabetes in men and women with normal glucose tolerance: The Strong Heart Study. Nutr Metab Cardiovasc Dis 2011; 21:418–23.

[46] Rebello SA, Chen CH, Naidoo N, Xu W, Lee J, Chia KS, et al. Coffee and tea consumption in relation to inflammation and basal glucose metabolism in a multi-ethnic Asian population: a cross-sectional study. Nutrition 2011; 10:61.

[47] Geleijnse JM. Habitual coffee consumption and blood pressure: an epide- miological perspective. Vasc Health Risk Manag 2008;4:963–70.

[48] Zhang Z, Hu G, Caballero B, Appel L, Chen L. Habitual coffee consumption and risk of hypertension: a systematic review and meta-analysis of prospective observational studies. Am J Clin Nutr 2011;93:1212–9.

[49] Kotani K, Fujiwara S, Hamada T, Tsuzaki K, Sakane N. Coffee consumption is associated with higher plasma adiponectin concentrations in women with or without type 2 diabetes: response to Williams et al. Diabetes Care 2008;31:e46. author reply e7.

[50] Marques-Vidal P, Bochud M, Paccaud F, Mooser V, Waeber G, Vollenweider P. Distribution of plasma levels of adiponectin and leptin in an adult Caucasian population. Clin Endocrinol 2010;72:38–46.

  • 0
  • 1037